The Open Networking Foundation (ONF) has launched an SD-RAN project with the aim of building an open source Near Real-Time RAN Intelligent Controller (nRT-RIC) compatible with the O-RAN architecture as well ONF’s existing base cloud-native solutions leveraging disaggregation and whitebox hardware.
ONF said its goal is to foster open source software platforms and multi-vendor solutions for mobile 4G and 5G RAN deployments.
Central to the project is the development of an open source near-real time RIC called µONOS-RIC (pronounced “micro-ONOS-RIC”).
µONOS is a microservices-based SDN controller created by the refactoring and enhancement of ONOS, the leading SDN controller for operators in production tier-1 networks worldwide. µONOS-RIC is built on µONOS, and hence features a cloud-native design supporting active-active clustering for scalability, performance and high availability along with the real-time capabilities needed for intelligent RAN control. The O-RAN ALLIANCE E2 interface is used to interface between µONOS-RIC and vendor supplied RAN RU/DU/CU RAN components.
Carriers would be able to run new "xApps" on top of the µONOS-RIC. These open xApps could provide functionality that traditionally has been implemented in vendor-proprietary implementations, including providing visibility and control over the RAN.
Significantly, the ONF's SD-RAN project is backed by AT&T, China Mobile, China Unicom, Deutsche Telekom, Facebook, Google, Intel, NTT, Radisys and Sercomm.
A working skeleton prototype of the µONOS-RIC controller is already running above a RAN emulation platform through the E2 interface. ONF has demonstrated handover and load balancing at scale, supporting over 100 base stations and 100,000 user devices with less than 50ms handover latency (less than 10ms latency for 99% of all handovers). Field trials are expected by early 2021.
“AT&T strongly supports the development of specifications and components that can help drive openness and innovation in the RAN ecosystem. The O-RAN ALLIANCE’s specifications are enabling the ecosystem, with a range of companies and organizations creating both open source and proprietary implementations that are bringing the open specifications to life. The ONF SD-RAN project, along with the O-RAN OSC, will expand the ecosystem with an nRT-RIC that can support xApps and help demonstrate their interoperability. This project will help accelerate the transition to an open RAN future,” stated Andre Fuetsch, President and Chief Technology Officer, AT&T Labs.
“Google is an advocate for SDN, disaggregation and open source, and we are excited to see these principles now being applied to the RAN domain. ONF’s SD-RAN project’s ambition to create an open source RIC can help invigorate innovation across the mobile domain, said Ankur Jain, Distinguished Engineer, Google.
https://www.opennetworking.org/news-and-events/press-releases/onf-announces-new-5g-sd-ran-project/
https://youtu.be/1VbiRGBjqK8
ONF said its goal is to foster open source software platforms and multi-vendor solutions for mobile 4G and 5G RAN deployments.
Central to the project is the development of an open source near-real time RIC called µONOS-RIC (pronounced “micro-ONOS-RIC”).
µONOS is a microservices-based SDN controller created by the refactoring and enhancement of ONOS, the leading SDN controller for operators in production tier-1 networks worldwide. µONOS-RIC is built on µONOS, and hence features a cloud-native design supporting active-active clustering for scalability, performance and high availability along with the real-time capabilities needed for intelligent RAN control. The O-RAN ALLIANCE E2 interface is used to interface between µONOS-RIC and vendor supplied RAN RU/DU/CU RAN components.
Carriers would be able to run new "xApps" on top of the µONOS-RIC. These open xApps could provide functionality that traditionally has been implemented in vendor-proprietary implementations, including providing visibility and control over the RAN.
Significantly, the ONF's SD-RAN project is backed by AT&T, China Mobile, China Unicom, Deutsche Telekom, Facebook, Google, Intel, NTT, Radisys and Sercomm.
A working skeleton prototype of the µONOS-RIC controller is already running above a RAN emulation platform through the E2 interface. ONF has demonstrated handover and load balancing at scale, supporting over 100 base stations and 100,000 user devices with less than 50ms handover latency (less than 10ms latency for 99% of all handovers). Field trials are expected by early 2021.
“AT&T strongly supports the development of specifications and components that can help drive openness and innovation in the RAN ecosystem. The O-RAN ALLIANCE’s specifications are enabling the ecosystem, with a range of companies and organizations creating both open source and proprietary implementations that are bringing the open specifications to life. The ONF SD-RAN project, along with the O-RAN OSC, will expand the ecosystem with an nRT-RIC that can support xApps and help demonstrate their interoperability. This project will help accelerate the transition to an open RAN future,” stated Andre Fuetsch, President and Chief Technology Officer, AT&T Labs.
“Google is an advocate for SDN, disaggregation and open source, and we are excited to see these principles now being applied to the RAN domain. ONF’s SD-RAN project’s ambition to create an open source RIC can help invigorate innovation across the mobile domain, said Ankur Jain, Distinguished Engineer, Google.
https://www.opennetworking.org/news-and-events/press-releases/onf-announces-new-5g-sd-ran-project/
https://youtu.be/1VbiRGBjqK8
ONF's Aether targets Enterprise 5G/LTE-Edge-Cloud-as-a-Service
The Open Networking Foundation (ONF) announced Aether – the first open-source platform for delivering Enterprise 5G/LTE-Edge-Cloud-as-a-Service.
Aether (pronounced ‘ee-ther’) provides mobile connectivity and edge cloud services for distributed enterprise networks, all provisioned and managed from a centralized cloud.
Aether leverages existing work from ONF including the CORD and ONOS platforms. It can be run in a Kubernetes environment, and it simultaneously supports deployment on licensed (4G/5G) and unlicensed (CBRS) spectrum.
“Aether opens the door for enterprises to rapidly deploy 5G and edge cloud services to help power their digital transformations. This can be done with a variety of flexible business models including in collaboration with telco operators, cloud operators, and third party providers. It offers the flexibility to utilize a wide range of bands including 5G, licensed bands, and CBRS. This cloud-enabled platform turns mobile connectivity and enterprise mobile edge cloud capabilities into a cloud-managed service, simplifying deployment and operations while delivering scalable and cost-effective services,” states Guru Parulkar, Executive Director, ONF & Executive Director, Stanford Platform Lab.
ONF already has a modest Aether pilot production network supporting edge cloud services running at two ONF offices, Intel Labs, and at other sites. This pilot is centrally managed and controlled from public cloud, with Aether Edge installations at each site. The entire deployment is maintained by ONF and ONF members using a distributed CI/CD DevOps development pipeline.
As with all ONF projects, Aether is backed by ONF’s operator partners AT&T, China Unicom, Comcast, Deutsche Telekom, Google, NTT Group and Turk Telekom. Additionally, ONF, Intel, GSLab, Infosys, and Accelleran are actively collaborating as a distributed DevOps team enhancing and maintaining Aether.
Aether (pronounced ‘ee-ther’) provides mobile connectivity and edge cloud services for distributed enterprise networks, all provisioned and managed from a centralized cloud.
Aether leverages existing work from ONF including the CORD and ONOS platforms. It can be run in a Kubernetes environment, and it simultaneously supports deployment on licensed (4G/5G) and unlicensed (CBRS) spectrum.
“Aether opens the door for enterprises to rapidly deploy 5G and edge cloud services to help power their digital transformations. This can be done with a variety of flexible business models including in collaboration with telco operators, cloud operators, and third party providers. It offers the flexibility to utilize a wide range of bands including 5G, licensed bands, and CBRS. This cloud-enabled platform turns mobile connectivity and enterprise mobile edge cloud capabilities into a cloud-managed service, simplifying deployment and operations while delivering scalable and cost-effective services,” states Guru Parulkar, Executive Director, ONF & Executive Director, Stanford Platform Lab.
ONF already has a modest Aether pilot production network supporting edge cloud services running at two ONF offices, Intel Labs, and at other sites. This pilot is centrally managed and controlled from public cloud, with Aether Edge installations at each site. The entire deployment is maintained by ONF and ONF members using a distributed CI/CD DevOps development pipeline.
As with all ONF projects, Aether is backed by ONF’s operator partners AT&T, China Unicom, Comcast, Deutsche Telekom, Google, NTT Group and Turk Telekom. Additionally, ONF, Intel, GSLab, Infosys, and Accelleran are actively collaborating as a distributed DevOps team enhancing and maintaining Aether.