Thursday, December 9, 2021

HyperLight demos Hybrid Transmitter with DFB Laser on Thin-Film Lithium Niobate

HyperLight, in collaboration with Harvard University and Freedom Photonics, has demonstrated a breakthrough process of integrating high-power lasers on thin-film lithium niobate platform. 

The hybrid platform enabled the first high optical power transmitter chip consisting of an electrically pumped DFB laser integrated with HyperLight’s high-speed thin-film lithium niobate intensity modulator capable of operating at 60 mW output power and beyond 50 GHz electro-optic bandwidth.

The demonstration used DFB lasers for integration with thin-film lithium niobate because of their low cost, small footprint, and large output powers exceeding 100 mW. Using only passive-alignment and flip-chip thermo-compressive bonding, the DFB lasers emitted approximately 60 mW (17.8 dBm) of optical power into the thin-film lithium niobate waveguides. This will enable new architecture such as large arrays of high-power transmitters as well as unprecedented performance in optical links.

“We are very excited to be a part of this remarkable demonstration of the hybrid integration capability of the thin-film lithium niobate platform with other critical optical components,” said Mian Zhang, co-author, CEO of HyperLight. “The traditional bulk lithium niobate solutions are widely deployed but are limited in performance and applications due to the lack of integration. Our miniaturized thin film integrated solution combines the superior proven material property of lithium niobate with scalable silicon semiconductor processes at low cost. Hybrid integration of key active high-performance components such as DFB lasers with thin film lithium niobate results in best in class performance combined with low cost which opens up a lot of possibilities for those innovators who are looking into lower power consumption and lower cost solutions for optical networks beyond 800G and 1.6Tb/s.”

The results of the above demonstration are described in a manuscript by Amirhassan Shams-Ansari, et. al. entitled, “Electrically pumped high power laser transmitter integrated on thin-film lithium niobate,” (https://arxiv.org/abs/2111.08473). This effort is part of a DARPA funded program Lasers for Universal Microscale Optical Systems (LUMOS) which aims to bring high performance lasers and amplifiers to manufacturable photonics platforms through heterogeneous integration of diverse materials. 

http://www.hyperlightcorp.com

HyperLight and Nokia Bell Labs demonstrate 300 GBd for PAM-4 


HyperLight, a start-up based in Cambridge, MA developing thin-film lithium niobate (LN) photonic integrated circuits (PICs), and Nokia Bell Labs demonstrated a new record-breaking high-speed data transmission using its ultrahigh bandwidth, linear, and low noise thin-film lithium niobate Mach Zehnder (MZM) modulator.Using a HyperLight photonic chip, Nokia Bell Labs demonstrated a low complexity faster than Nyquist scheme without transmitter pre-processing...

HyperLight advances its thin-film lithium niobate PICs

HyperLight, a start-up based in Cambridge, Mass., cited progress in its development of thin-film lithium niobate photonic integrated circuits for next-generation 800 Gbps and beyond 1.6 Tbps optical networking systems.HyperLight claims its thin-film lithium niobate integrated photonics solution combines the proven superior material property of lithium niobate with an established and scalable integration process. The company has developed a thin-film...

HyperLight claims breakthrough with its lithium niobate optical modulator 

HyperLight, a start-up based in Cambridge, MA developing thin-film lithium niobate (LN) photonic integrated circuits (PICs), announced breakthrough voltage-bandwidth performances in integrated electro-optic modulators. HyperLight says its electro-optic PIC could lead to orders of magnitude energy consumption reduction for next generation optical networking.Current electro-optic modulators require extremely high radio-frequency (RF) driving voltages...