Huawei has released its mesh backbone network solution, featuring all-optical switching, full mesh and one-hop service transmission and designed to enable the delivery of ultra-high bandwidth at the Next Generation Optical Networking (NGON) 2017 event.
The new Huawei solution features what is claimed to be the first commercial optical cross-connect and optical transport network (OXC+OTN) cluster devices and is intended to enable data centre (DC)-centric backbone networks and to provide wavelength/sub-wavelength connections between DCs for one-hop transmission, thereby reducing latency and supporting ultra-high bandwidth between any two facilities.
At NGON, Huawei demonstrated the solution providing dynamic grooming of optical wavelengths and cross-connections through OXC, as well as OTN cluster, high-integration and multi-functional service boards.
Huawei believes that inter-DC traffic will become the main type of traffic carried over transport networks, and that to address this requirement operators will need to evolve their backbone networks originally designed for traditional telecom services. New DC-centric networks will enable mesh interconnectivity between nodes and one-hop service transmission to help shorten the network path for lower latency and allow real-time exchange of data between DCs to effectively support cloud services.
Huawei's new OXC+OTN cluster mesh backbone network solution is designed to allow transport backbone networks to be re-architected for the cloud era, in particular by providing a cluster mesh backbone network that enables one-hop transmission between any two cities.
Leveraging wavelength-level switching and liquid crystal on silicon (LCOS) technology, the OXC provides from 320 up to 640 Tbit/s cross-connect capacity and supports wavelength grooming in up to 32 optical directions, while operating with power consumption at the level of hundreds of watts.
Additionally, a new optical backplane addresses the issue of complicated fibre connections within traditional ROADM. The optical backplane is designed to significantly simplify fibre connectivity, as well as reducing loss associated with connection and improving system reliability.
The OTN component of the solution serves to address access and grooming requirements of small-granularity services at the sub-wavelength level. The cluster technology supports non-blocking cross-connections between OTN subracks and provides resource pools for transmission channels, thereby enabling continuous expansion of channel resources between DCs.