Acacia Communications and Inphi have demonstrated error free links in 400ZR mode between Inphi’s COLORZ II QSFP-DD and Acacia’s 400ZR QSFP-DD module in Arista switches over a 120 km amplified link using 75GHz channel spacing.
“Hyperscale network operators are planning to utilize interoperable 400ZR solutions to support growing bandwidth requirements between data centers,” said Josef Berger, AVP of Marketing, Optical Interconnect at Inphi. “This testing provides an exciting validation of the 400ZR ecosystem designed to meet the need for high-performance, low power coherent pluggable solutions that support cost-effective DWDM architectures for DCI.”
“The industry has been anticipating the availability of interoperable 400ZR solutions to meet the growing demand for DCI bandwidth, particularly for network operators evolving their data center architectures to 400G Ethernet with optical connections between switches,” said Tom Williams, Vice President of Marketing at Acacia. “These solutions provide data center operators with greater flexibility in the components and suppliers they use to build out their networks.”
NeoPhotonics and Inphi show 400ZR interoperability
OIF publishes 400ZR implementation agreeement
OIF launched the 400ZR project in response to requests from large-scale data center operators and their suppliers for an interoperable coherent interface that transports 400 Gigabit Ethernet over longer distances. Traditional network operators also became interested in 400ZR for their metro needs. Based on their different requirements, OIF developed specs and tweaked the channel requirements so the IA would benefit both data center and network operators. While developing the IA, OIF collaborated closely with other standards bodies.
The 400ZR IA addresses two applications:
- Amplified, point-to-point DWDM links with reaches of 120 km or less
- Unamplified, single wavelength links with a loss budget of 11dB
No restriction on the physical form factor is implied by the IA (QSFP-DD, OSFP, COBO, CFP2, CFP8), but the specifications target a pluggable DCO architecture with port densities equivalent to grey client optics.