Monday, December 9, 2019

Intel unveils cryogenic control chip for quantum systems

Intel Labs unveiled a cryogenic control chip — code-named “Horse Ridge” — for quantum computing systems. Horse Ridge is a mixed-signal SoC that brings the qubit controls into the quantum refrigerator — as close as possible to the qubits themselves. It effectively reduces the complexity of quantum control engineering from hundreds of cables running into and out of a refrigerator to a single, unified package operating near the quantum device.


Intel said the Horse Ridge design radically simplifies the control electronics required to operate a quantum system. It replaces bulky instruments with a highly-integrated system-on-chip (SoC) that will simplify system design and allow for sophisticated signal processing techniques to accelerate set-up time, improve qubit performance and enable the system to efficiently scale to larger qubit counts. Designed to act as a radio frequency (RF) processor to control the qubits operating in the refrigerator, Horse Ridge is programmed with instructions that correspond to basic qubit operations. It translates those instructions into electromagnetic microwave pulses that can manipulate the state of the qubits.

The Horse Ridge chip, which was developed with TU Delft and TNO (Netherlands Organization for Applied Scientific Research), will enable control of multiple quantum bits (qubits) and set a clear path toward scaling larger quantum systems. Horse Ridge is fabricated using Intel’s 22nm FinFET technology.

“While there has been a lot of emphasis on the qubits themselves, the ability to control many qubits at the same time had been a challenge for the industry. Intel recognized that quantum controls were an essential piece of the puzzle we needed to solve in order to develop a large-scale commercial quantum system. That’s why we are investing in quantum error correction and controls. With Horse Ridge, Intel has developed a scalable control system that will allow us to significantly speed up testing and realize the potential of quantum computing,” states Jim Clarke, Intel’s director of Quantum Hardware.