A new generation of single wavelength 100G trancseivers is a step closer.
Whereas currently deployed 100G optical transceivers rely on 4x25G WDM technology, the next generation of transceivers will use higher order modulation techniques, such as PAM4, and higher data rate operation at 53Gbaud. This means that that one laser and one receiver could do the job that currently requires four lasers and four receivers. In addition to 100G-DR/FR/LR, Source Photonics plans to leverage this technology for 400G-DR4/FR4.
At this week's ECOC 2017 in Sweden, Source Photonics will be hosting a private demonstration of its internally packaged TOSA and ROSA sub-assemblies in an optical loopback configuration through 20km of single-mode fiber using a single 100G channel of Credo’s low power PAM4 IC technology.
Source Photonics said its testing revealed that the bit-error-rate (BER) after 20km of fiber remains better than the KP4 FEC requirement and was around 5x10-5. The TOSA is based on Source Photonics’ EML laser technology which provides the necessary bandwidth to achieve a TDECQ value below 2.5dB. The room temperature link budget of 10dB provides considerable margin for the most significant link specifications under development in the industry, allowing production margin for performance variations.
“We are continuing to invest in next generation technology, such as Single Lambda 100G, as part of our commitment to providing leading edge solutions for data centers,” said Manish Mehta, EVP, PLM Source Photonics
Sunday, September 17, 2017
Source Photonics and Credo demo Single Lambda 100G at 20km
Sunday, September 17, 2017
100G, Source Photonics