Thursday, March 3, 2022

NeoPhotonics demos 120Gbaud InP-based coherent receiver/modulator

NeoPhotonics has used its Indium Phosphide-based Coherent Receiver and Coherent Modulators, coupled with its Ultra-Narrow Linewidth Tunable Lasers or Distributed Feedback Lasers, to demonstrate 120Gbaud operation in applications ranging from 800G LR transmission to 400G long haul transmission.

The next-generation DSP baud rate will be based on 120+ Gbaud, and potential applications include 800LR (≤10km), 800ZR for DCI (≤100km), 800ZR+ for metro-core (≤1000km), and 400Gb/s ultra-long-haul transmission. 

Demonstrations of this level of performance are reported and listed below, showing that corresponding high-speed optoelectronic components are available today to match the DSP baud rate and to enable pluggable or embedded modules at these data rates.

Using its indium phosphide (InP)-based coherent driver modulator (CDM) and intradyne coherent receiver (ICR) with more than 60GHz-bandwidth, NeoPhotonics has experimentally demonstrated the feasibility of the following transmission systems at 120+ Gbaud:

  • Long-haul: 400Gb/s over 1500km standard single-mode fiber EDFA-only transmission system with a superior required OSNR of 16.7dB at OFEC threshold;
  • Regional/Metro-core: 800Gb/s (with probabilistic shaping) over 1000km standard single-mode fiber EDFA-only transmission system with a superior required OSNR of 24.3dB at OFEC threshold;
  • ZR DCI: 800ZR over a single-span EDFA-based 100km standard single-mode fiber with a superior required OSNR of 25dB at OFEC threshold and a transmitter output power of -6dBm; and
  • Unamplified LR: 800LR over an unamplified 10km link with a 9dB link budget, and 800Gb/s “coherent lite” over an unamplified 1km link with a budget of 5.2dB, both using a low-latency FEC with a BER threshold at 4 x 10-3. The latter used self-homodyne coherent detection so as to significantly simplify the DSP and remove wavelength locking between transmitter and local oscillator.

“We are pleased to take this opportunity to highlight the progress we have made in pushing our high-performance indium phosphide integration technologies to even higher speeds and over longer distances to enable new potential applications in cloud and data center applications,” said Tim Jenks, Chairman and CEO of NeoPhotonics. “These 120Gbaud components, coupled with our ultra-narrow linewidth external cavity “nano” tunable laser or our distributed feedback lasers, along with concurrent DSP advances, could enable pluggable modules to operate at 800G for applications within and between datacenters, as well as to extend the speed and reach of embedded telecom systems,” concluded Mr. Jenks.

https://www.neophotonics.com/press-releases/?newsId=13151