Sunday, July 12, 2020

MIT's “Light squeezer” reduces quantum noise in lasers

Researchers at MIT have developed a quantum “light squeezer” that reduces quantum noise in an incoming laser beam by 15%.

The portable light squeezer works at room temperature and could be used to improve laser measurements where quantum noise is a limiting factor. The setup is based on a marble-sized optical cavity, housed in a vacuum chamber and containing two mirrors, the first of which is smaller than the diameter of a human hair. The second, larger, nanomechanical mirror, which suspended by a spring-like cantileve, is the key to the system’s ability to work at room temperature.

“The importance of the result is that you can engineer these mechanical systems so that at room temperature, they still can have quantum mechanical properties,” says Nergis Mavalvala, the Marble Professor and associate head of physics at MIT. “That changes the game completely in terms of being able to use these systems, not just in our own labs, housed in large cryogenic refrigerators, but out in the world.”

http://news.mit.edu/2020/quantum-noise-laser-precision-wave-detection-0707