Packetlight Networks, a provider of DWDM and optical fibre networking solutions, has launched the PL-2000ADS, a 200 Gbit/s 1U multi-protocol, multi-rate ADM/muxponder/transponder designed for short-haul and encryption applications.
The new solution is designed to provide enterprises and data centres with a modular, cost-effective and compact platform delivering transport capacity of up to 200 Gbit/s by aggregating 10/40/100 Gigabit Ethernet, 8/16/32 Gbit/s Fibre Channel, STM64/OC192, OTU2/2e and OTU4 into dual 100 Gbit/s OTU4 uplinks.
Packetlight's PL-2000ADS can also function as a standalone 200 Gbit/s Layer-1 encryption solution, allowing enterprises with a DWDM network to implement security without altering their infrastructure. The product complies with FIPS 140-2 Level 2 security requirements and provides GCM-AES-256 bit encryption and key exchange based on the Diffie-Hellman (DH) protocol without restricting performance.
The PL-2000ADS specifically targets short-haul 100 G bit/s connectivity and Layer-1 encryption applications, including:
1. Last mile access/aggregation CPE for 10/40/100 Gbit/s managed service.
2. High capacity, short-haul enterprise and campus networks.
3. Dynamic add/drop of services in ring and linear add/drop topologies.
4. As a feeder solution to third party OTU4 transponder cards.
5. Up to 200 Gbit/s Layer-1 encryption for 10/40/100 Gbit/s service.
6. High bandwidth connectivity for data centre and cloud computing.
* In November 2016, PacketLight announced the launch of the PL-2000M platform for data centre interconnect (DCI) and metro networks. The muxponder/transponder supports carrier-grade coherent 200 Gbit/s tunable uplink capacity for serving multiple applications and protocols such as data, storage, OTN and TDM.
The PL-2000M enables transport of 20 x 10 Gbit/s over a single wavelength. removing the need to replace existing infrastructure, with the 200 Gbit/s uplink tunable across the ITU 50 GHz and 100 GHz grids, allowing adjustment by the operator to fit the required wavelength.